Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3] is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following [1,2,2,null,3,null,3] is not:
1
/ \
2 2
\ \
3 3
错误的解法,就是遇到多个 null 值的时候就会出问题,也就是在有的时候虽然他不对称, 但是终须遍历的结果表明他就是对称的
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 import org.junit.jupiter.api.Test;import java.util.ArrayList;import java.util.List;public class SymmetricTree { public boolean isSymmetric (TreeNode root) { List<TreeNode> list = new ArrayList <>(); inOrderTraversal(root, list); int center = list.size() / 2 ; return compare(list, center); } public boolean compare (List<TreeNode> list, int center) { for (int i = 0 , j = list.size() - 1 ; i < center; i++, j--) { if (list.get(i).val != list.get(j).val) { return false ; } } return true ; } public void inOrderTraversal (TreeNode root, List<TreeNode> list) { if (root == null ) { return ; } inOrderTraversal(root.left, list); list.add(root); inOrderTraversal(root.right, list); } @Test void test () { } }
好的解法就是使用递归,所谓对称简单来说就是 root 的左孩子和右孩子要一样才行